

busworld. EUROPE 2025 CONGRESS BRUSSELS, BELGIUM 6-9 OCT 2025 in collaboration with

Organised by

Session #4

09:00 - 10:30

Shaping the Future: Zero Emission Bus Market Trends and Policy Support

PLENARY SESSION

fleetcast

Thank you

to our

sponsors!

EU Policy Pathways for Bus Fleet Decarbonisation

Baiba Miltoviča

Transport, Energy and Infrastructure Section President, European Economic and Social Committee

European Zero-Emission Bus Conference 2025

Shaping the Future: Zero-Emission Bus Market Trends and Policy Support

Decarbonising Public Transport:
The Role of Zero-Emission Buses in Sustainable Urban Mobility
Planning

Baiba Miltoviča

Transport Energy Infrastructure and Information Society (TEN)

Former TEN Section President

Brussels Expo, 8 October

- 1. Sustainable Urban Mobility Plans (SUMPs): a foundation for public transport decarbonization
- 2. Support and capacity building: enabling bus decarbonization
- 3. Transport poverty
- 4. Stakeholders at the heart of mobility transitions
- 5. Framing zero-emission buses as central climate and environmental tools
- 6. Call to action

The One-Stop-Shop for the Transition to Hydrogen Fleets

Tim Evison

Managing Director, SympH2ony

SympHony 2

by Messer and Toyota Tsusho

Sounds good. Performs even better.

Q. Battery or fuel-cell (FC)? A. We will clearly need both!

Zur Web-Ansicht - 1. Oktober 2025

energate exklusiv

Megawattladen

Netzanschlüsse werden zum "Bottleneck" beim E-Lkw-Laden

+ Follow

For some reason - posts about hydrogen always stir up emotions. I think hydrogen (not "instead of" but "in parallel to" electric) plays a role in the decarbonization of heavy duty transport in Europe for three reasons:

1. If we would go "electric only" we need to get the electric grid to a level where we can build enough charging stations for the 6 million trucks in Europe. It will take many years and be incredibly expensive. A hydrogen infrastructure in parallel will be less expensive and you don't need a grid connection to build it, putting 2000 H2 stations in Europe is relatively easy.

.

Let's build the infrastructure, the momentum, and the partnerships to make zero-emission transport a reality. \blacksquare and let's try to avoid some of the mistakes that we see now while scaling up electric. And let's stop the debate about "either or". We need both.

04.11.2025

Q. Battery or fuel-cell (FC)? A. We may well need both in one fleet!

5 5 5 120

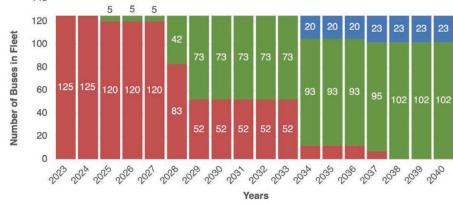


Figure 29 - Example Agency Mixed Fleet Composition Graph

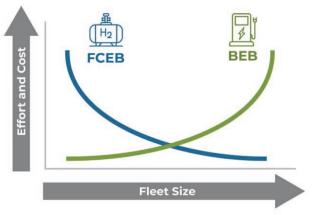


Figure 30 - FCEB vs BEB Effort and Cost as Fleet Size Increases

CTE: "be aware that in all cases, the cost per bus of hydrogen infrastructure is more cost effective as fleets get bigger."

Source: CTE - Zero-Emission Bus Transition Planning Guidebook

04.11.2025

Fuel Cell

Diesel

On-Route ■ Depot BEB

SympH₂ony exists to help FC fleet operators transition to zero-emission operations: ZE made *easy!*

MESSER

Company

Messer is the world's largest privately owned specialist in industrial, medical and specialty gases and a highly professional and sustainable global player.

Products

Messer produces and supplies oxygen, nitrogen, argon, carbon dioxide, hydrogen, helium, shielding gases for welding, specialty gases, medical gases, food gases and many different gas mixtures.

Customers

Our gases are used in industry, environmental protection, medicine, the food industry, welding and cutting technology, 3D printing, construction, research and science.

Company

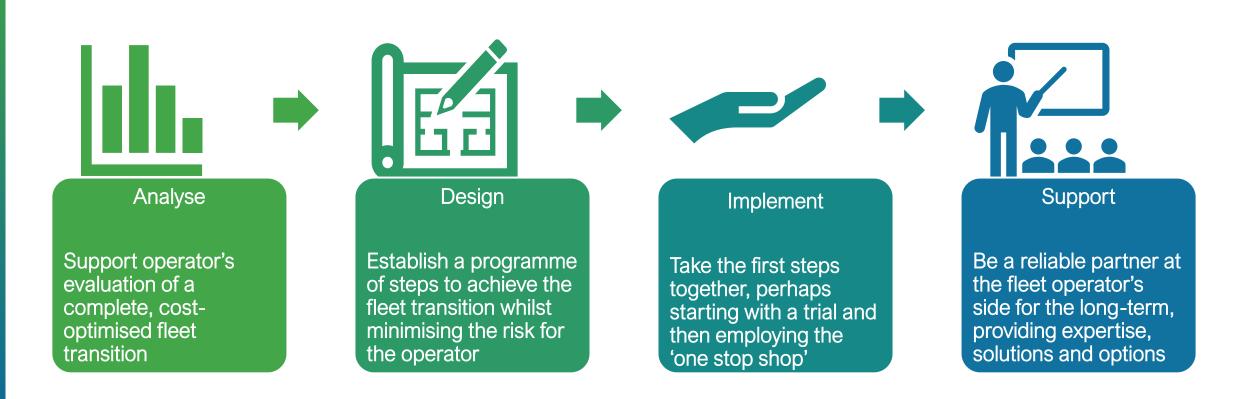
As the Toyota Group's sole general trading company, Toyota Tsusho develops and invests in new business from a global perspective. As automotive professionals with unique capabilities and know-how, we strive to lead the Toyota Group in the challenge to develop the evolution of next-generation mobility.

Products

Our services and solutions are focused on sustainability and value for society supplied by 8 business units with dedicated solution focus.

Customers

Our services are used in the automotive, chemical, steel industry and in African markets.



We work with you to plan an optimal transition

Then we stay by your side to help make it happen

04.11.2025

'One Stop Shop'

Pay-per-km for a service package comprising:

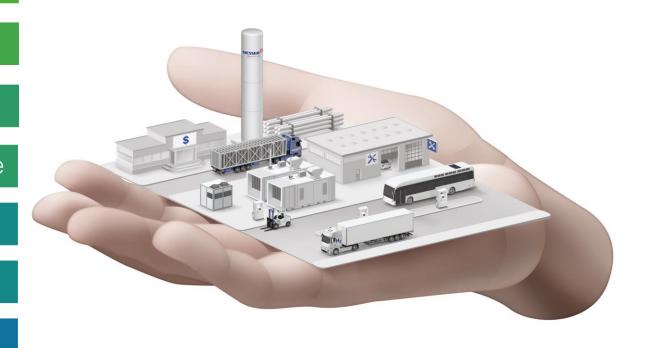
H₂ powered FC vehicles

H₂ production and refuelling infrastructure

H₂ back-up supply

Maintenance for vehicles and H₂ infrastructure

Operation services and power management


Full compliance services (e.g. RFNBO 'quota')

Flexible project related financing options

Funding (if available)

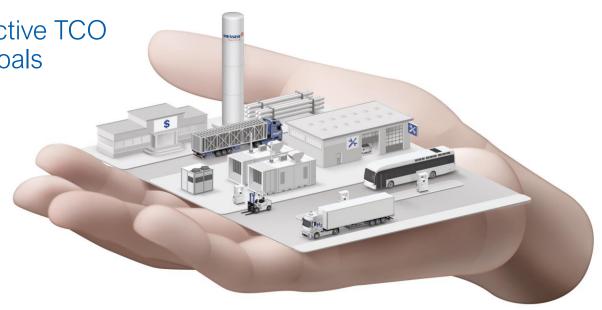
04.11.2025

With REVG we are already taking the first steps towards delivering the ,one-stop-shop' as part of a full-fleet transition in Kerpen/DE:

1. hydrogen service for 26 FCEB in operation today

 trial of ,pay-per-use' model for expansion of FCEB fleet, including tailored service development

3. support for REVG's longterm plans for ZE transition, optimising cost with on-site hydrogen production



11/4/2025

Advantages of the "One Stop Shop"...

- High reliability
 More reliable and better coordinated service from a single provider.
- Seamless transition Experienced partners helping to deliver the implementation of fuel-cell & hydrogen technologies
- Lower risk for the fleet operator
 More responsibility lies with us you only pay for the kilometers driven
- Faster, more cost-effective rollout
 Pay-per-use model (€/km) for predictable, attractive TCO based on taking larger steps towards your ZE goals
- Tailored service
 Package designed for your specific needs
- Long-term partnership
 Trusted partners sharing the journey with you

.. and it is not limited to FCEB!

Fuel-cell vehicle availability

1,5 - 5t

3,5 t

16-24t

19-27 t

40 t

- 1,5t 5t lifting capacity
- Commercially available

- Up to 700km range
- Commercially available

- Up to 450 km range
- Commerically available

- Up to 400 km range
- Commercially available

- Up to 600 km range
- Small series production

04.11.2025

How may we help you?

Get in contact with one of our experts!

Jason Dennis
H2 Business Developer
Toyota Tsusho Europe SA
jason.dennis@toyota-tsushoeurope.com

Andreas Noky
H2 Business Developer
Messer SE & Co. KgAA
Andreas.Noky@messergroup.
com

Tim Evison
President
SympH2ony
tim.evison@messergroup.com

Kenji Yamanaka
Vice-President
SympH2ony
kenji.yamanaka@toyotatsusho-europe.com

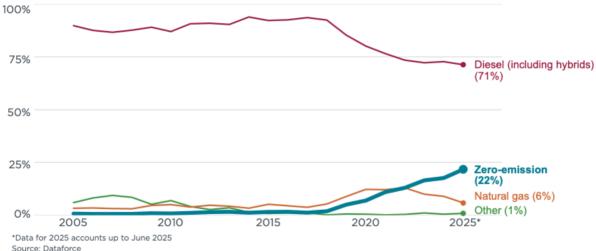
info@symph2ony.eu

04.11.2025

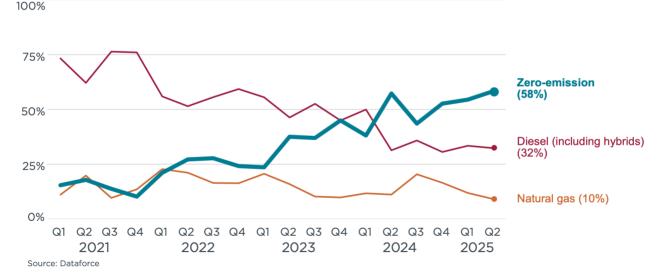
The State of Play of ZEBs in the European Market

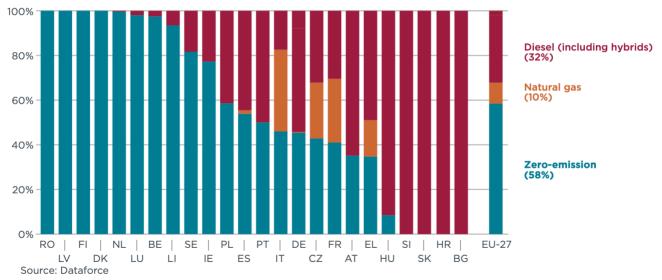
Eamonn Mulholland

Researcher, International Council on Clean Transportation

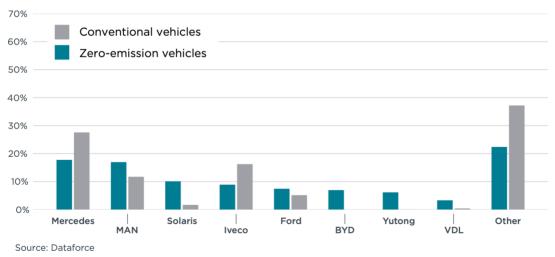

The rise and rise of the European electric bus

Eamonn Mulholland 8th October 2025


Zero-emission bus sales continue to climb

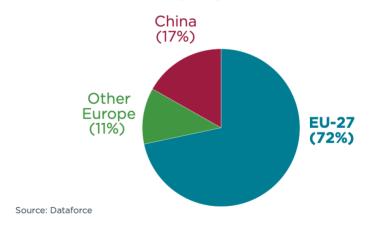

New zero-emission city buses are now more popular than combustion engines

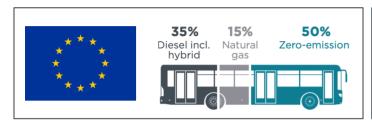
Sales share of new city buses in the EU-27 by fuel type

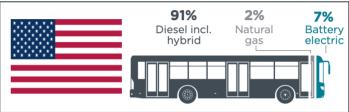

Many Member States, in both the east and west, are only buying zero-emission city buses

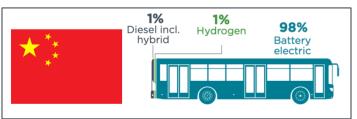
Sales share of new city buses by Member State in 2025

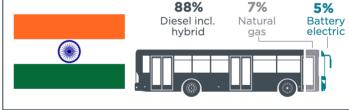
Europe's legacy manufacturers are keeping pace with electrification


Sales share of new **buses and coaches** in 2025 in the EU-27 by manufacturer and powertrain

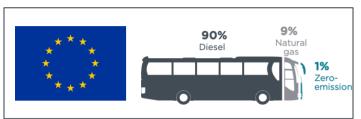

Most zero-emission buses sold in the EU are manufactured in Europe


- Manufacturers
 headquartered in China
 remain the greatest
 competitor to European
 manufacturers in the ZE
 market, particularly Yutong,
 BYD, and King Long
- Ford Otosan, based in Turkey, is the main supplier of zero-emission mini-buses

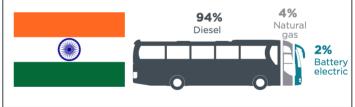

Sales share of new zero-emission buses and coaches in 2025 by region of manufacturer



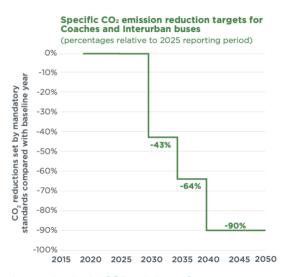
Global comparison of city bus sales by powertrain in 2024



Note: Zero-emission in the EU includes both electric and H2 fuel cell. Data for the US includes both city buses and coaches.


Sources: Dataforce (EU), Gasgoo Auto (China), Vahan dashboard (India), IHS Markit (US)

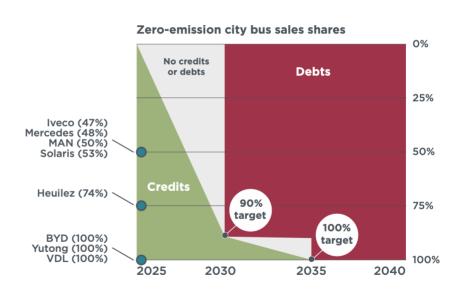
Global comparison of coach sales by powertrain in 2024



Note: Zero-emission in the EU includes both electric and H2 fuel cell. Data for China includes 3.5-7.5 tonnes.

Sources: Dataforce (EU), Gasgoo Auto (China), Vahan dashboard (India)

Buses and coaches face tough, but achievable, targets from 2030



Source: (EU) 2024/1610 amending Regulation (EU) 2019/1242 as regards strengthening the CO2 emission performance standards for new heavy-duty vehicles

Most manufacturers are on track to earn credits in the bus standards

- Manufacturers can earn credits for over-compliance with the CO₂ standards
- Credits can be used for under-compliance in 2030 and beyond
- Many manufacturers are on track to earn significant credits in 2025, thanks to high zero-emission shares

Questions? e.mulholland@theicct.org

Market Ramp-Up of ZEBs in Germany: Policy and Market Perspectives

Oliver Braune

Programme Coordination Electric Mobility, German Federal Ministry of Transport

Market ramp-up of ZE-Buses in Germany: a policy and market perspective

ZEB Conference: Shaping the Future – Zero Emission Bus Market Trends and Policy Support

Oliver Braune G 23 Electric Mobility and Charging Infrastructure Federal Ministry of Transport

Vision: Zero Emission

Political and regulatory framework, objectives and background

Germany's cornerstones of climate policy (2019 to 2025)

Clear goals for the transport sector, especially for public transport, are outlined. By 2030, 50% of city buses in Germany are to be electric.

The minimum targets for low- and zero-emission buses in public transport are 45% for the first reference period until the end of 2025 and 65% for the second period until the end of 2030.

The working report of the Expert Forum on Climate-Friendly Mobility and Infrastructure serves as the basis for additional measures to comply with the Climate Protection Act (2025).

Second amendment to the German Climate Protection Act 2024.

Vehicle Procurement Act (2021)

E-Bus Funding Guideline (2021)

Current activities (2024-2025)

Intended to ensure the fulfilment of national climate protection targets and compliance with European targets.

Since 2021, the Bus Funding Guideline (FMT)/BMV) has been supporting the procurement of battery and fuel cell buses, battery trolleybuses, and biomethane-powered buses and their respective infrastructure.

Regulatory framework at EU- and national level

(an overview, selected measures)

City buses:

Should be 90% emission-free by 2030, and 100% emission-free by 2035.

Coach and intercity buses:

Emissions to be reduced by 45% by 2030. by 65% by 2035, and by 90% by 2040.

As part of the amendment to the Air Quality Directive and the new EURO VII emissions standard, the limit values for particulate matter and nitrogen dioxide currently in force in Europe are being revised.

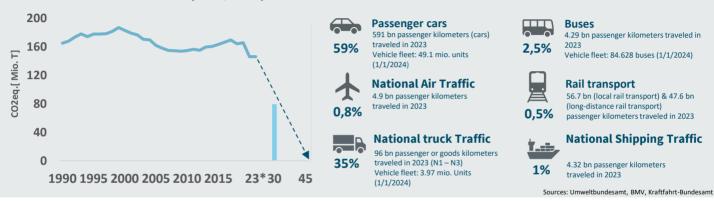


CO2 emission standards for heavy commercial vehicles

Directive

Clean Vehicles Directive/ SaubfahrzeugBeschG

Energy Tax Directive GHG guota

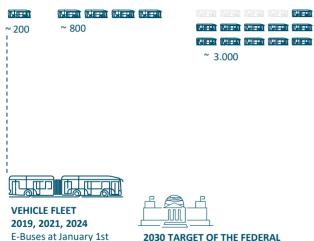


The minimum targets for low- and zeroemission buses in public transport are 45% for the first reference period until the end of 2025 and 65% for the second period until the end of 2030.

The Energy Tax Directive and GHG quota trading are measures designed to make the use of zero-emission vehicles more economically attractive.

Climate policy challenges in transport

Greenhouse Gas Emissions (2023, 2024)



2024: 143 million tons of CO2e. | 2030: max. 79 million tons of CO2e. | 2045: Climate neutrality.

By 2030, emissions must be reduced by 65%, or 64 million tons of CO2e. To achieve this, almost half of the city buses are to be electric by 2030.

Target vision: Electrification of city buses in Germany

Support measures and challenges

2030 TARGET OF THE FEDERAL GOVERNMENT

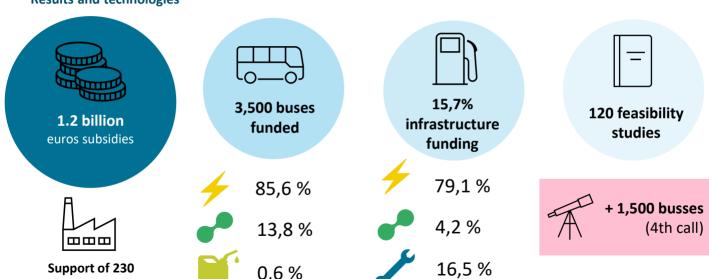
Half of all city buses in Germany are electric.

potentially 6.000 -7.000 **E-Bus Funding Guideline**

(2021-2025)
At least 3,500 buses approved
in the BMV subsidy program, as
of September 2025

and **CON CON CON CON** den den den den den and and and and and

---- At least 20.000 vehicles

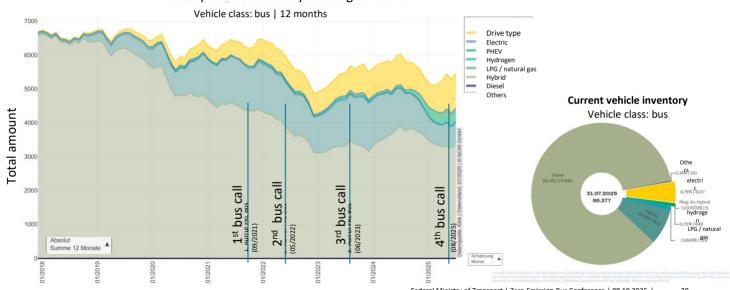

BMV Funding programme: Buses with alternative drives (E-Bus Funding Guideline)

Content, status, results, technologies

Funding programme*: Buses with alternative drives

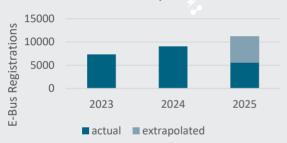
Results and technologies

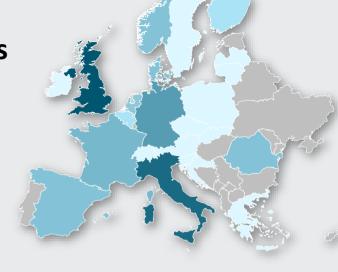
companies

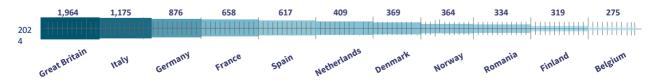

^{*}Funding Guideline for the promotion of alternative drives for buses in passenger transport, BMV (Federal Ministry of Transport)

Market development

Electric bus fleet and new registrations in Germany


Development of monthly new registrations





New Registrations of E-Buses

Growth of E-Bus Registrations in Europe

Programme Insights: Projects and Perspective

Flag ship projects

Representing the wide scope of the funding program

E-bus depot at Munich Airport | source: Munich Airport

Articulated bus operated by DB Regio Bus Nord | source: DB Regio Bus Nord

E-Coach at Scharf Reisen | source: Scharf Reisen

Converted double-decker sightseeing bus from Willms Touristik in Cologne | source:

Perspectives

Federal Ministry of Transport (BMV) plans to continue the funding guidelines to ensure the most seamless transition possible

Midterm goal reached: Fundings led to market ramp-up

Contact details

Federal Ministry of Transport Division G 23 Electric Mobility and Charging Infrastructure Invalidenstraße 44 10115 Berlin Contact Person

Oliver Braune, Programme Coordination E-Mobility and Buses Oliver.Braune@bmv.bund.de www.bmv.de

Austria's ZEB Transition - the eMove Programme

Katharina Seper

Policy Advisor, Austrian Ministry of Innovation, Mobility & Infrastructure

Bundesministerium Innovation, Mobilität und Infrastruktur

eMove Austria & EBIN

Zero Emission Bus Conference

Katharina Seper BMIMI Dep. II/1 Mobility transition 08th October 2025

Total Austrian BEVs in operation (August 2025)

239.980

BEV passenger cars in operation

16.017

BEV light commercial vehicles in operation *

500

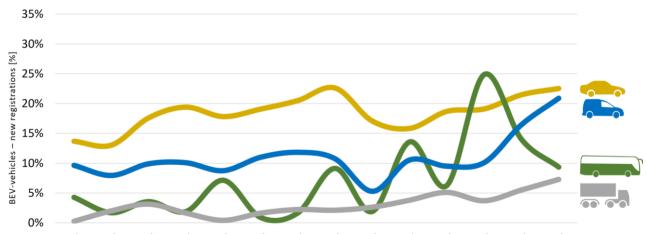
BEV heavy duty vehicles in operation*

423

BEV-Busses in operation *

4,55 %

BEV passenger car share in total passenger cars

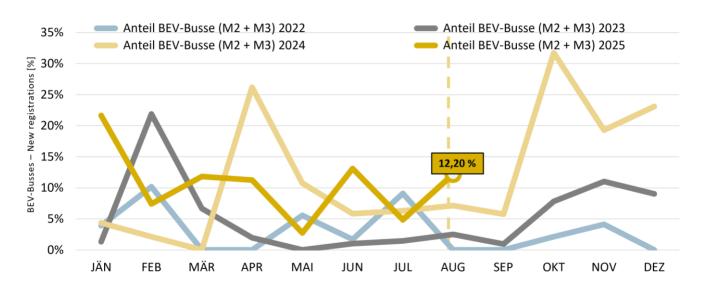

32.589

publicly accessible charging points

Federal Ministry
Innovation, Mobility
and Infrastructure
Republic of Austria

New registrations:

Annual development of cars, buses, trucks

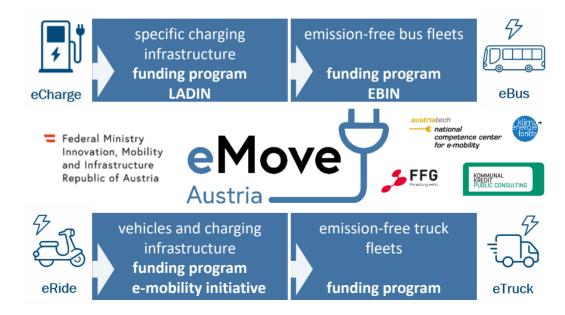

Q1/22 Q2/22 Q3/22 Q4/22 Q1/23 Q2/23 Q3/23 Q4/23 Q1/24 Q2/24 Q3/24 Q4/24 Q1/25 Q2/25

Source: Statistik Austria / Visualisation: AustriaTech

Federal Ministry
Innovation, Mobility
and Infrastructure
Republic of Austria

New registrations:

Annual Developements BEV-Busses



eMove Austria

Austrians federal programme to promote e-mobility

- Holistic approach to the mobility transition: consolidates all funding and measures (including regulatory policies) in the field of e-mobility
- Goal by 2030: 95% of the population should be within 10 km of a fast charging station
- Investments 2025 & 2026: approx. €480 million
- Scientific monitoring and annual performance report
- Online platform with consolidated information (in development)
- 4 areas: eCharge, eBus, eTruck, eRide

Austrian funding opportunities regarding e-mobility

specific charging infrastructure

funding program **LADIN**

= Federal Ministry Innovation, Mobility and Infrastructure Republic of Austria

2026:

€ 30 million

for different charging usecases

ENIN

eTruck

eRide

specific charging infrastructure

funding program LADIN

emission-free bus fleets

funding program EBIN

 Federal Ministry Innovation, Mobility and Infrastructure Republic of Austria

2025:

€ 83 million

<u>2026:</u>

€ 54,5 million

eRide

infrastructure
funding program
e-mobility initiative

emission-free truck fleets

funding program ENIN

eTruck

LADIN

= Federal Ministry Innovation, Mobility and Infrastructure Republic of Austria

2025:

€ 30 million 2026:

€ 30 million

eRide

infrastructure funding program e-mobility initiative

vehicles and charging

ENIN

eTruck

specific charging infrastructure

funding program LADIN

emission-free bus fleets

funding program
EBIN

Federal Ministry Innovation, Mobility and Infrastructure Republic of Austria

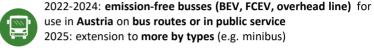
2025:

€ 83 million 2026:

€ 54,5 million

vehicles and charging infrastructure funding program e-mobility initiative

emission-free truck fleets


funding program ENIN

eTruck

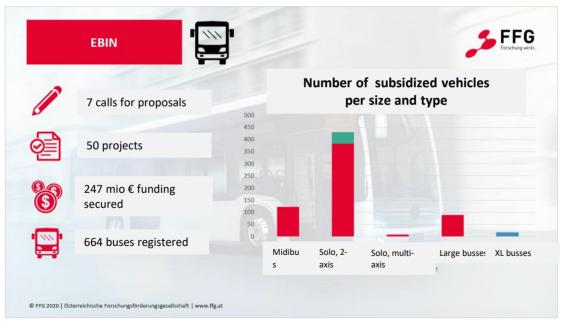
Federal Ministry
Innovation, Mobility
and Infrastructure
Republic of Austria

Funding of charging/refueling infrastructure in addition to bus procurement

Funding is available to those who bear the costs.

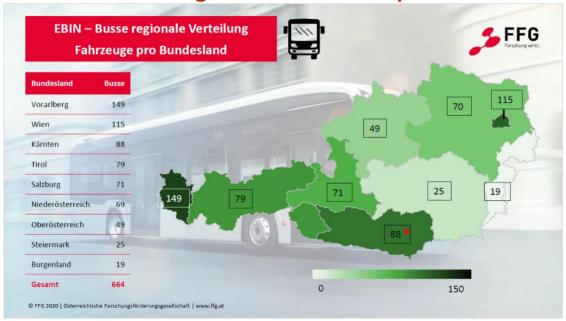
e.g.: bus companies, transport operators, energy suppliers, ...

recognition of costs upon submission


funding:

2022-2024: **80%** of the additional costs for buses **40%** of the investment costs for infrastructure

2025: **60%** of the additional costs for buses


60% of the investment costs for infrastructure

EBIN 2022-2024

Federal Ministry
Innovation, Mobility
and Infrastructure
Republic of Austria

EBIN 2022-2024: regional destribution per state

*still incl.
KEBIP

STELE: a platform to connect the energy and the mobility sector

www.stele.at

- Goal: developing a platform for the mobility as well as the energy sector, including for example:
 - Interactive map
 - Webtool for matching needs and offers
 - Webtool to support the fleet electrification
 - Checklist for fleet operators in order to support the decarbonization
- Regional matchmaking events take place starting tomorrow
 - In order to connect stakeholders in every region of Austria

Federal Ministry
Innovation, Mobility
and Infrastructure
Republic of Austria

Stadhwerke Leobart e. U.

14 Vantahroverbund Youl VVT

S verkehroserbund find VVT is verkehroserbund find VVT IS Stadbuerke Amstellen Groter

Verkehroverbund Vorarberg Smbre Verkehroverbund Ynol Grobs

Listing of successful EBIN projects

Morotifuel

BIS Landard

https://www.ffg.at/ebin-erfolgsprojekte

BCB SeePeld Telfs

© Wiener Linien / Manfred Helme

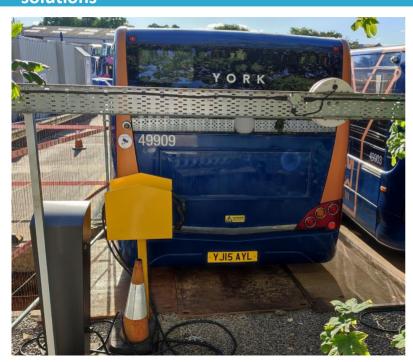
CITY BUS

Decarbonising the Hard-to-Electrify European Bus Routes

Tim Howgego

Independent Consultant

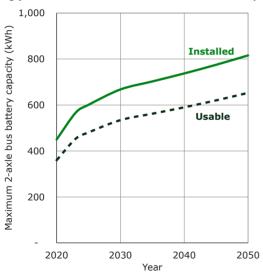
JIVEs / MEHRLIN projects


1

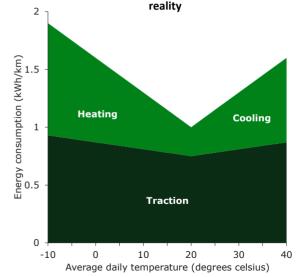
Problem: The longer-term route challenge for the battery electric bus

This presentation quantifies the longer-term bus route challenges, not depot fuel supply – but depot issues may force suboptimal solutions

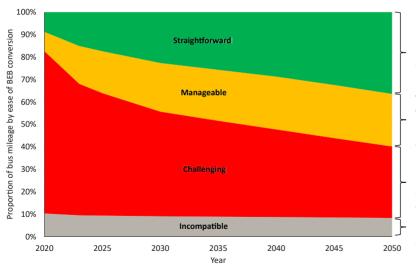
In practice, the biggest technical transition blocker is often depot fuel supply – be that grid connections or hydrogen at scale.


Long-term Battery Electric Bus (BEB) route compatibility and Total Cost of Ownership (TCO) analysis may reasonably ignore this as a *transitional* issue.

However, bus depots are not easily moved, and as decarbonisation targets draw closer, suboptimal solutions may be pursued – potentially suboptimal both on cost and risk.


The main constraints on Battery Electric Bus (BEB) compatibility are weight, primarily battery energy density, and local climatic extremes

BEB energy/range is weight-limited – we expect the rate of improvements (primarily in battery energy density) to slow in coming years – some other commentators are more optimistic

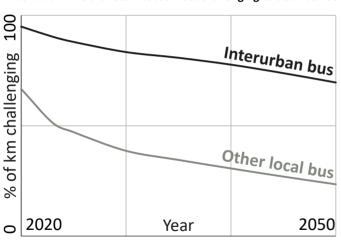

BEBs must be specified for the most extreme climatic temperature, which can double energy consumption – we assume battery-powered heating/cooling, which is not always

BEBs lack the range to operate many routes on a single daily charge, with "challenging" routes requiring additional resources

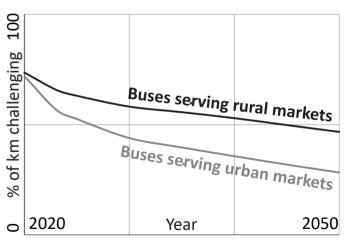
Open data for scheduled public bus, for ¾ of Europe, was used to model energy and theoretical operations at route level. Routes were assigned compatibility with BEBs to 2050, assuming all energy from the battery:

BEBs can operate the route with a simple overnight at-depot charge.

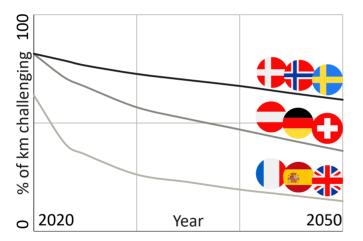
There is sufficient slack in the existing route Peak Vehicle Requirement to allow BEB operation, but only if BEBs can return to depot during slack periods to charge.


Insufficient slack in the existing vehicle allocation for BEB operation, so BEBs are likely to require one of the solutions outlined later in this presentation - our assessments are made against these routes.

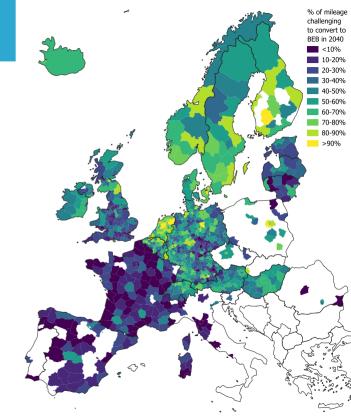
Long distance intercity coach routes where one outand-back BEB trip could not return to home depot.


Many interurban routes will remain challenging into the future – a broader policy concern as these form the backbone of rural networks

Interurbans are the local routes most challenging to decarbonise



These tend to form the backbone of services to rural markets



Nations and regions differ in their proportions of challenging mileage

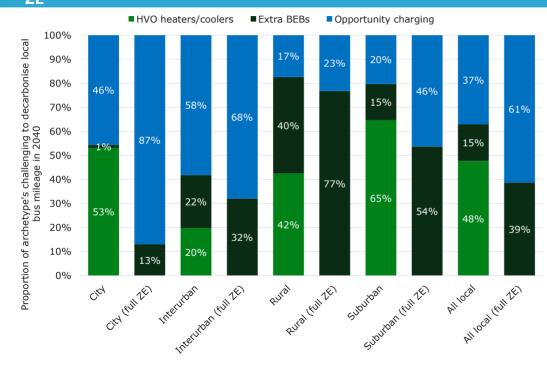
European nations differ, both in the proportion of current and future local bus mileage challenging to decarbonise

Regional differences can also be found within nations (NUTS3 mapped)

2

Theory: The TCO-optimal solution for challenging local bus routes

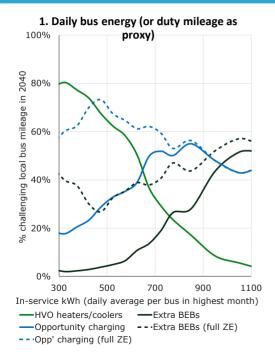
3 main BEB-based options selected for detailed Total Cost of Ownership analysis –excluding immature solutions such as induction

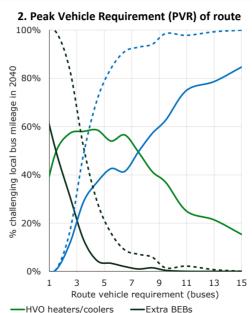


Option	HVO heaters/coolers	Opportunity charging	Extra BEBs
How it works	Passenger cabin energy can up to double energy use in extreme weather – fuelling this from HVO allows battery to be specified for traction only	Remote charging during natural breaks in service, typically using dedicated fixed pantograph chargers – BEB recharged throughout the day	Vehicles added to route peak requirement create sufficient slack to return buses to depot for daytime charging
Method caveats	Used current HVO prices – but supply is constrained	Assumed large battery topped up across the day – but small LTO battery with full recharge per trip theoretically cheaper	Assumed typical distance from termini to depot – not operator-specific
Pros	No major operational changes	Potentially minimal change to route operations	Resilient day-to-day and long term
Cons	Not fully Zero Emission – approximately 90% reduction	Remote fixed infrastructure adds risk and complexity	Requires operational and organisational flexibility
Proxy concept	Hydrogen range extenders	Remote plug charging	Inter-working peak-only routes into daytime network

Full method and evidence: https://fuelcellbuses.eu/public-transport-hydrogen/potential-hydrogen-buses-europe-analysis-alternatives-technical-report

The cheapest solution for challenging routes tends to be opportunity charging – unless HVO heater/coolers are considered ZE



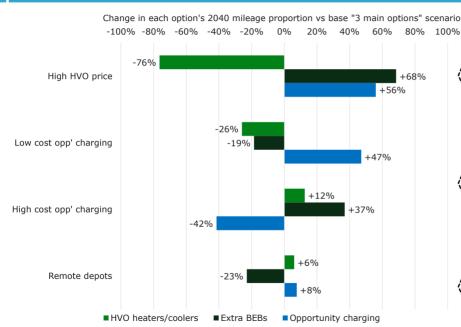

At current prices, HVO heaters/coolers would dominate challenging rural and suburban routes, and have a significant role in all routes – but is this sufficiently ZE?

Without secondary heaters/cooler, opportunity charging is the main solution for challenging interurban and city routes, hence the main solution overall.

Daily bus energy and Peak Vehicle Requirement are the best two guides to cheapest option choice at route level

Opportunity charging
Opp' charging (full ZE)

-- Extra BEBs (full ZE)

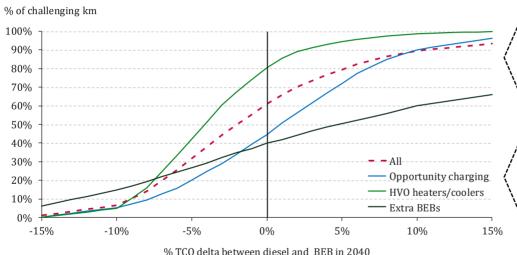

HVO heaters/coolers are good range-extenders, especially at lower PVRs where opportunity chargers would be poorly utilised.

Extra BEBs suit low-PVR routes where opportunity chargers would be infrequently used, and routes where energy requirements might exceed that of a single BEB in summer.

Opportunity charging is primarily dictated by PVR – the only solution for routes with more than 10 buses if secondary heaters/coolers are disallowed.

Pricing-in risks will tend to favour Extra BEB solutions, except where depots are remote, while option choice is very sensitive to HVO price

Double HVO price (plausible given constrained supply) reduces secondary heaters/coolers by 4/5 and promotes relatively low-risk Extra BEBs


Double or halving of opportunity charger costs is indicative of implementation risks – this helps explain their rarity

Only remote depots (3 times further) disfavour Extra BEBs – most likely in rural and SME operations where Extra BEBs can be best suited

Cost of BEB-based transition for challenging routes vs diesel – HVO could make the transition cheaper (assuming current prices)

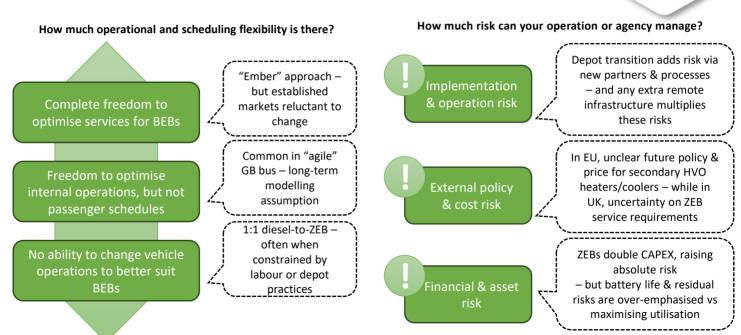
Diesel vs BEB TCO delta by option

Extra BEB solutions have the greatest spread of cost

With HVO heaters/coolers options only 40% of mileage

is more expensive – without

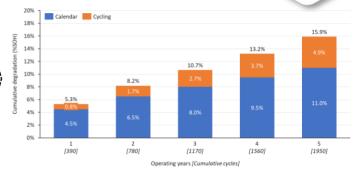
them, 2/3 is more expensive


changes and tend to be the most expensive – but better manage risks

Practice: Operational flexibility, risk, and a potential market for hydrogen

Pre-TCO questions for challenging local bus route decarbonisations: Operational flexibility and ability to manage risk

LFP changes presumptions: Reappraise battery life risk expectations to emphasise in-service utilisation, not residual battery life

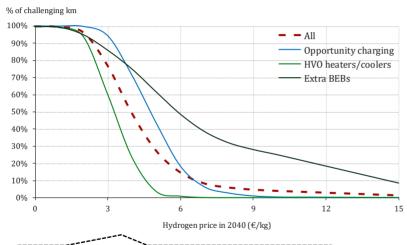

Adding extra cycles to a fixed calendar degradation (more cycles per year) will tend to give a **better** lifetime payback on investment than using the battery more sparingly over a potentially longer life...

If those extra cycles are converted into in-service, revenue-earning, bus operation.

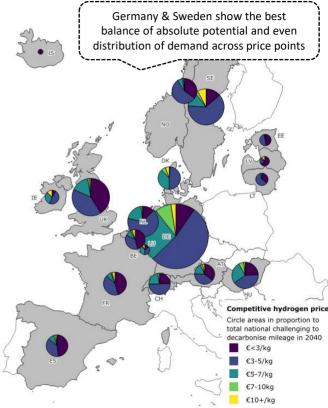
LFP batteries may pragmatically be assumed to have no net residual value at end of life

LFP tends to degrade less per cycle than NMC, so tends to be better suited to multiple charges per day.

LFP has slightly lower energy density than NMC, so LFP-operated routes more likely to be "challenging".

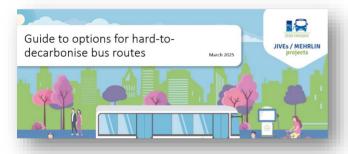


Upper graph shows NMC, derived by ERM from Thingvad et al. 2021. Lower graph derived by ERM from Argonne National Laboratory's EverBatt. 2023.


LFP: Lithium Iron Phosphate, NMC: Nickel Managnese Cobalt.

Green hydrogen's strength is not on cost, but its potential to counter inflexibilities and risks

Competitive hydrogen price vs cheapest battery-based option



Hydrogen is most competitive where risks are being pricedin – and even more so where operators lack flexibility

Publications: How-to strategy guide aimed at operators/agencies, plus technical reports containing detailed evidence & analysis

- Introduction to the challenge
- Overview & application of each main BEB-based option
- Niche options & hydrogen fuel cell alternative
- Strategic decision tree

Technical reports

- Analysis of hard-to-decarbonise scheduled bus routes covering ¾ of Europe
- Common and secondary technologies, with extra evidence around batteries
- TCO-based evaluation of main options, including competitiveness of hydrogen

https://fuelcellbuses.eu/publications

Thank you for your attention

Project coordination:

Project dissemination:

The **JIVE and JIVE2 projects** have received funding from the Clean Hydrogen Partnership under Grant Agreement No 735582 and 779563.

This Joint Undertaking receives support from the **European Union's Horizon 2020** research and innovation programme, Hydrogen Europe and Hydrogen Europe Research.

The MEHRLIN project is co-financed by the European Union's Connecting Europe Facility.

@fuelcellbus www.fuelcellbuses.eu

For further details about this study, please contact: **Tim Howgego** or **Eva Baker**

Coffee Break

Next breakout sessions start at 11:00 – go to:

Room 1122 for

"Optimising Zero Emission Bus Operations: Leveraging Data & AI"

Room 1123 for

"Evolution of CAPEX and OPEX for Zero Emission Buses: Outlook and Strategies"

