

EUROPEAN 7 C D O

ZERO EMISSION BUS

CONFERENCE 7th - 9th Oct 2025

@ Busworld Europe Brussels

Organised by

SESSION #7

13:30 - 16:30

Organisational Change and Real-World Performance of Zero Emission Buses

PLENARY SESSION

Agenda for this session

13:30 – 14:35	Case studies &
	industry insights

14:35 – 15:05	Coffee break

The PTA & PTO Perspectives on Oslo's ZEB Transition

Jon Stenslet

Manager Vehicles and Depots, Ruter Glenn-Ivar Gaalaas

Head of Fleet, Facilities & Infrastructure, Unibuss

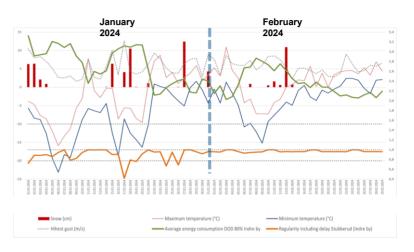
(E-bus winter experience)²

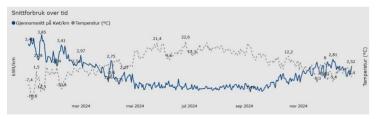
ZEB conference Busworld 8 Oct 2025

Glenn-Ivar Gaalaas Head of Fleet, Facilities and Infrastructure PTO: Unibuss, Oslo, Norway

Jon Stenslet
Manager Vehicles, Depots, E-infra and
Driver Facilities
PTA: Ruter As, Oslo, Norway

Ruter#





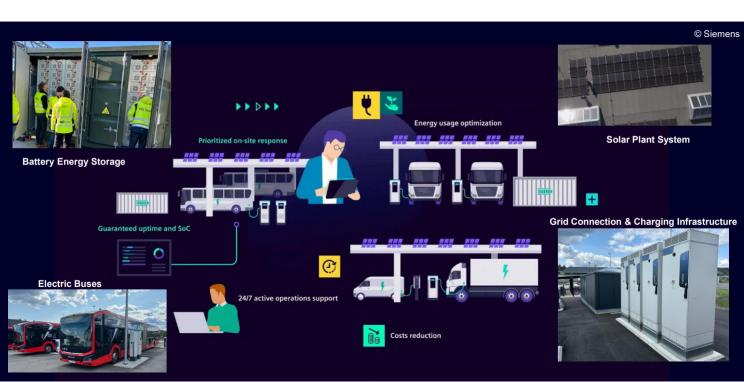
Analysis – Bus Regularity and Energy Consumption

- Correlation between regularity and challenging climatic conditions
- · High energy consumption -Lower regularity
- Regularity average in January was 89% lowest regularity recorded on January 17th at 42%
- · Regularity average in March was 99,9%
- Range average ≈ 250 km on September 1st and ≈ 120 km on January 1st

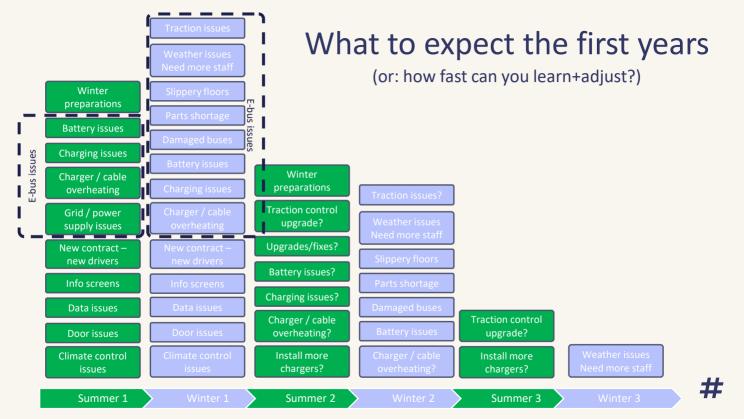
Range of Consumption (2024)

3,85kWh (Winter)

1,45kWh/km (Summer)


Operational Performance Winter 2024/25 (Regularity)

>99,9%



Challenge 1: frozen floor gets slippery and stops doors from closing (less/different heating in E-buses?)

Typical bus type - Oslo

Oslo city bus – 18,75m
Enter and exit via all 4 doors

→ Efficient on/off boarding

Delivered with electric heating.

→ Installed HVO heater 2024/5

Photos: Putor As

Oslo city bus – 18,06m Enter and exit via all 4 doors

Heated with CO2 heat pump Motor on axle 2 and 3 → Installed extra battery pack Empty weight 23t w/driver

Very good traction in winter ©

→ New std requirement for articulated buses (2 axle drive)

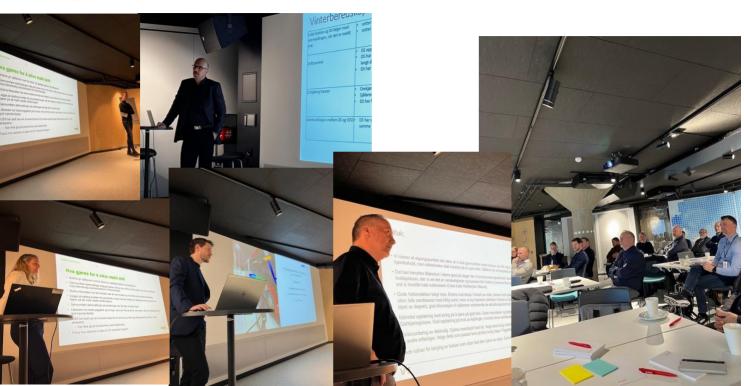
Playing with margins.. (for traction in winter conditions)

License No.	Fuel type	Bus type	Busstype	Dry weight - drive axle	Dry weight - total	Weight ratio - drive axle
EF 45192	EL	Articulated	Solaris Urbino 18,75	8 690	20 610	42 %
ED 19647	EL	Articulated	VDL SLFA-180	9 620	21 700	44 %
EV 70580	EL	Articulated	BYD K11U	9 020	20 200	45 %
DR 61226	Diesel	Articulated	Scania Citywide LE	8 930	19 455	46 %
DR 16287	Diesel	Articulated	Solaris Urbino 18,75	9 180	18 035	51 %
DN 82417	Diesel	Articulated	MAN Lion City GL	9 485	18 144	52 %
EB 21337	EL	Single	BYD K9UB-DW	8 830	14 090	63 %
CF 98113	Diesel	Single	Iveco Crossway	7 925	12 275	65 %
BU 16319	Diesel	Single	Scania Citywide LE Subu	8 780	13 365	66 %
BU 16266	Diesel	Boggie	Scania Citywide LE Subu	10 960	15 315	72 %
BT 93275	Diesel	Boggie	Iveco Crossway	10 750	14 650	73 %
BT 95120	Diesel	Single	Setra S418 Business	8 826	11 662	76 %

Winter tire traction grip reduced

Tire wear increased

ASR (anti-spin) needs improvement


Portal drive axle with central electric motor and differential = Not optimal

→ Wheel hub drive preferred (keep tractiontorque on both tires at all times)

Knowledge sharing Experience and dialogue about winter operations

Ruter invites 4 PTO's to share experiences and fixes

Sharing of experience from winter operations

Increased proportion of days with demanding driving conditions - more changeable weather Snow removal in Oslo was at times very inadequate

Establish operator contacts directly with those who manage snow removal services

A lot of damage to buses, among other things due to poor snow removal We need more cooperation with road maintenance management on snow removal and gritting (gravel on snow/ice)!

Need action cards for prioritizing deviation routes for bus lines/routes

Need joint meetings (Ruter and operators) with road maintenance

Questions?

Glenn-Ivar Gaalaas

glenn-ivar.gaalaas@unibuss.no

+47 97111618

Jon Stenslet

jons@ruter.no

+47 93268699

Ruter#

Key Takeaways from JIVE & JIVE 2, Two Flagship Fuel Cell Bus Projects

Magali Senaux

Senior Consultant, ERM

JIVE and JIVE 2: Key fuel cell bus performance outcomes

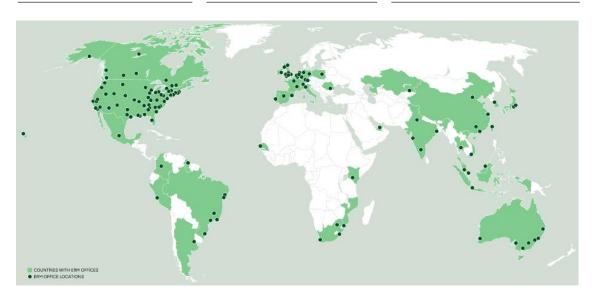
ZEB CONFERENCE 2025
MAGALI SENAUX, SENIOR CONSULTANT - PROJECT MANAGER

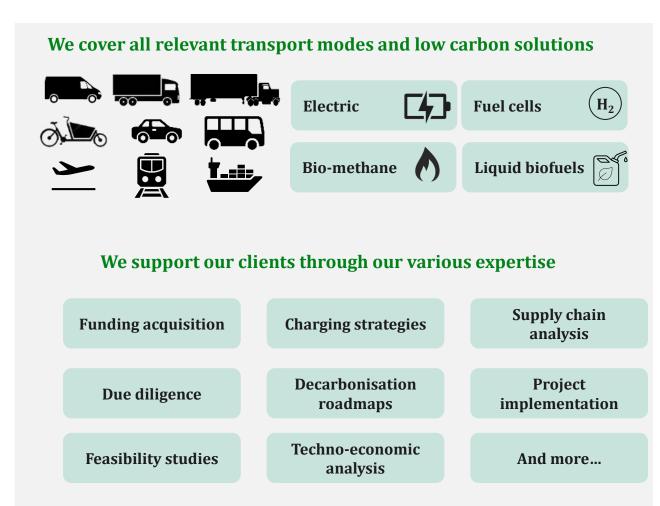
Sustainability is our business

Introduction to ERM's expertise in Transport decarbonisation

We've supported vehicle fleet operators, international organisations, infrastructure providers, Government bodies, and finance players in Europe, North America, and Australia

8000+

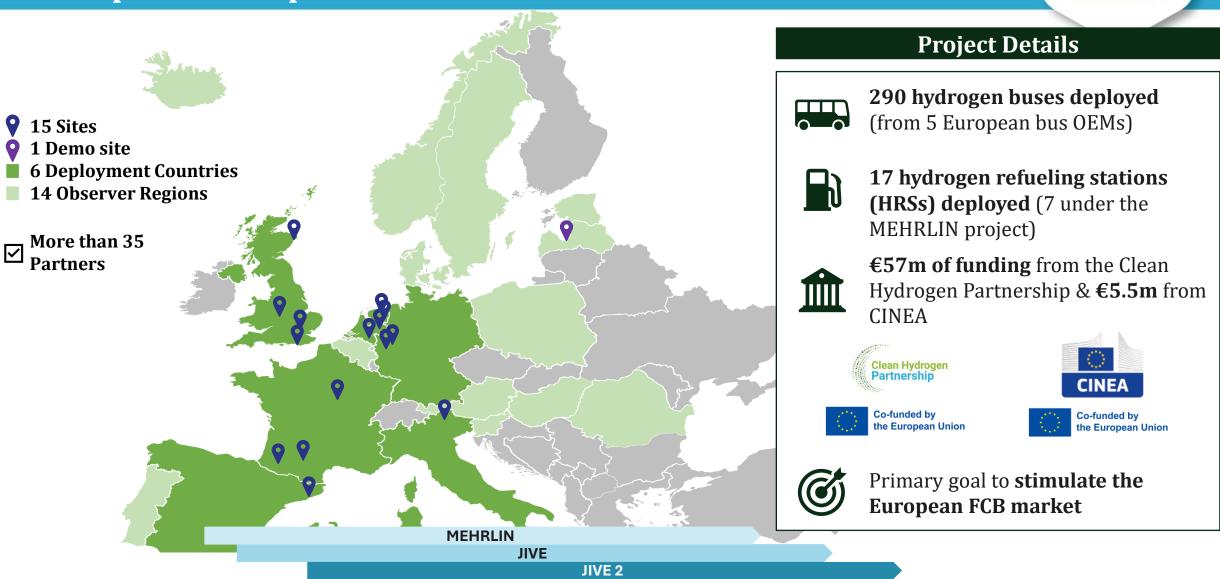

Professionals


40

Countries & territories

ESG & Sustainability consulting leader

Verdantix Green Quadrant 2024



JIVE & JIVE 2: Accelerating the deployment of hydrogen technology within public transport

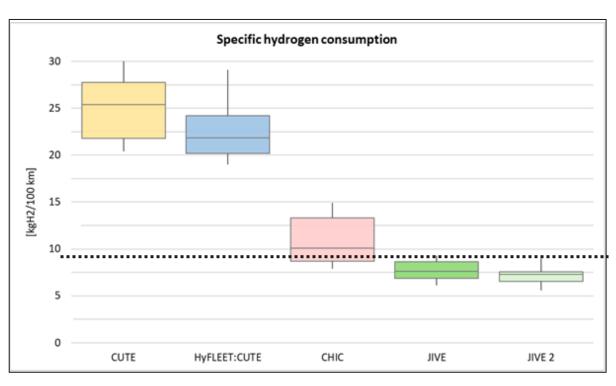
JIVE and JIVE 2 distinguished themselves from past projects through the scale of the deployments

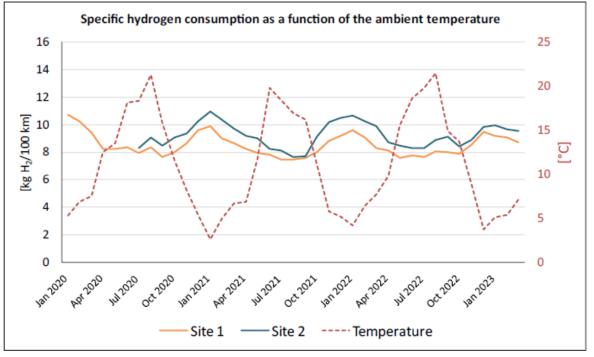
290 buses from **5 European OEMs**

Single deck buses (~68% including 2% articulated) and **double deckers** (~33%)

Fleet sizes between **5 to 50+ buses**

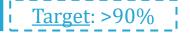
As of end of March 2025, >24.5M km have been driven cumulatively

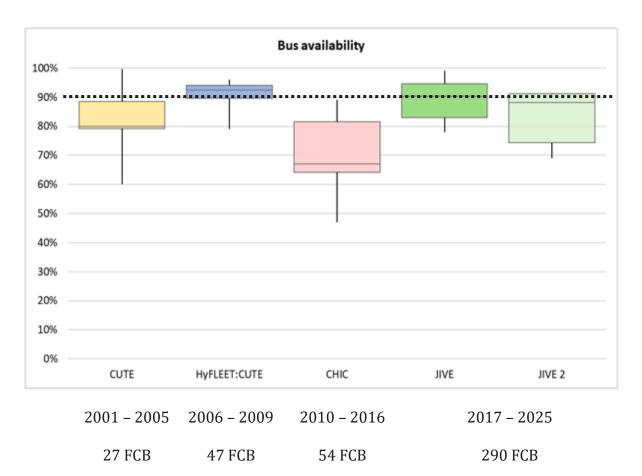


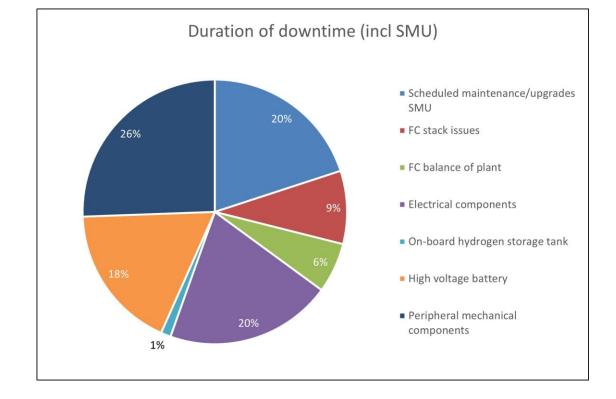

Key outcome #1: Buses have demonstrated great performance regarding improved fuel consumption

Fuel Consumption

Target: <9 kg/100 km (standard buses) / <14 kg/100 km (articulated buses)

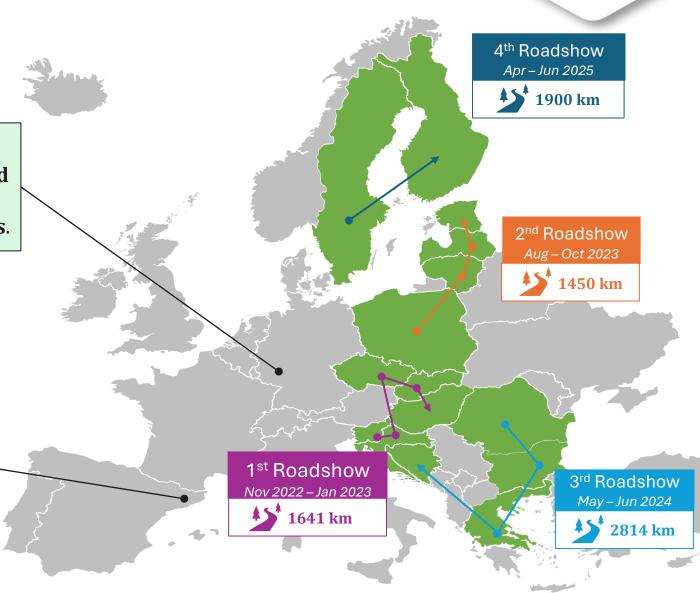

2001 - 2005 2006 - 2009 2010 - 2016 2017 - 2025 27 FCB 47 FCB 54 FCB 290 FCB


Driving style also impacts the hydrogen consumption


Key outcome #2: Bus availability has also greatly improved compared to previous EU projects

Availability

Key outcome #3: The projects have been able to stimulate the uptake of further fuel cell buses across Europe


With the delivery of **31 FCB in 2024**, RVK's total **fleet expected to grow to 160 FCB by end 2025**,

50 of which were procured **through the JIVE projects**.

Barcelona, ES

With the delivery of **2 new articulated FCB in 2024**,
TMB's total **fleet now consists of 46 FCB**, **10** of which were procured **through the JIVE 2 project**.

Key outcomes

Buses have demonstrated great fuel efficiency

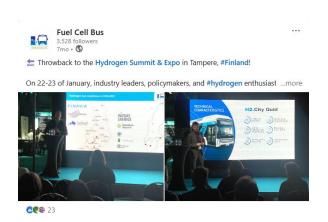
Bus availability has substantially improved compared to previous demonstrations

The projects have stimulated the future uptake of fuel cell buses across Europe

Engage with the JIVE/2 partners and sector stakeholders:

Register your interest for the Continuity Forums:

Continue learning more about the projects


Find all reports published on the **projects' website**

Continue following the projects via **LinkedIn**

Don't hesitate to also contact me via email if you have any questions or would like more information on the projects <u>Magali.Senaux@erm.com</u>

Thank you

If you're interested in discussing more about the JIVE projects or other, get in touch!

Magali.Senaux@erm.com

Technical Insights from Fuel Cell Bus Deployments: Operator and Manufacturer Perspective

Andreas Meyer

Technical Director, Wuppertaler Stadtwerke **Nicolas Pocard**

Vice President, Marketing & Strategic Partnerships, Ballard

3ALLARD™

Real World Performance of Hydrogen Fuel Cell Zero Emission Buses

Nicolas Pocard Vice-President Marketing and Strategic Partnerships

Shaping the Future of Zero-Emission Transit

- 1100+ FCEBs on the road in Europe ZEB technology with highest year-on-year growth
- 880 Ballard-powered FCEBs deployed in Europe –
 80% market share
- Proven performance with over 200 million km in service globally
- Road experience, operator & OEM feedback inform next generation fuel cells for transit bus
- Next generation module performance and lifecycle cost can help operators close the TCO gap

Operating in 13 countries and 50+ cities

Fuel cell buses have reached maturity and are now commercially proven for high-duty transit

3ALLARD™

FCEB – a challenging market

- Significant growth in fuel cell bus deployments with over 1,100 FCEB in Europe and 250 in NA
- Today, battery electric buses are dominating the ZEB market, but FCEB deployments in NA and EU have progressed faster in 2024, especially in Europe.
- Deployments of FCEBs are scaling up, driven by the transition to zero-emission bus fleets supported by net zero regulations, strong mandates, and public funding.
- Proven operational advantages of FCEBs as one-to-one replacement of diesel buses and the complexity of depot electrification at scale are moving more transit operators toward fuel cells
- But growth is heavily dependent on subsidies, as FCEBs have not reached TCO parity with BEB
- Hydrogen price and availability, along with high vehicle prices, are the main adoption barriers
- Hydrogen policy and funding uncertainty are challenging future market growth

The case for fuel cell buses – drivers for successful deployment

Cities – net zero focus. Access to **ZEB funding** Regions with access to manageable H2 logistics, programs (national or/and hydrogen higher average speed regional) Agencies with zero emission Transit agencies with more Transit agencies with **longer** articulated buses (better bus routes and express buses experience/infrastructure FCEB performances) Cities in regions where **FCEBs** have already been Cities already operating Agencies with an **internal** deployed – less risk and FCEBs - repeat orders hydrogen champion ecosystem in place

Voice of the customer: real-world experience informing development

Operator Requirements

Improve stack & BOP component life.

Reduce spare part lead times

Proactive diagnostics & predictive maintenance tools.

Continuous, modular training in local languages.

Long-term service agreements with transparency.

Ballard response

Product Development:

 FCmove®-SC - designed for durability and easier service.

Service Improvements:

- Regional parts hubs under development.
- Predictive maintenance capability and advanced data analytics.
- Expanded e-learning & train-the-trainer programs.

Lifecycle contracts & extended warranties.

FCmove®-SC Key Improvements

Hall 9 – Booth 956

30% increase in system power (EOL)

Fully integrated module with built-in power management (DC/DC converter) for simplified vehicle integration.

Higher operating temperatures

Operates at $60-75^{\circ}\text{C}$ outlet temperatures, reducing cooling requirements—lowering cost, decreasing weight, and improving fuel efficiency.

Maintenance-friendly design

40% reduction in part count with easily accessible serviceable parts, interfaces, and outlet locations.

Enhanced durability and reliability

Proven materials and advanced technology deliver a 20–30% reduction in expected life cycle costs.

Engineered to power transit buses – lower life cycle cost, simplified integration and enhanced safety

Advancing towards TCO parity

FCmove®-SC contribution

Reduce vehicle cost (capex)

- Increased FC scope
- Smaller radiator
- Easier integration

Reduce operating cost

- Lower fuel consumption
- Reduced maintenance time
- Lower PM and CM cost

Operator Perspective - Hydrogen Fuel Cel Zero Emission Buses

Andreas Meyer Technik Kfz

WSW mobil GmbH: About the site

Location	Wuppertal (Germany)		
Number of buses	52		
Type of buses (brand, single/double decker/articulated)	10x van Hool (A330-FC) 29x Solaris (Urbino 12 Hydrogen) 13x Solaris (Urbino 18 Hydrogen)		
Total mileage since start of operation	Van Hool: 1.511.000km Solaris: 1.675.000km (Total: 3.187.000km)		
Type of route(s)	All routes (no restrictions)		
HRS (public/private, manufacturer)	1x Privat, external, Maximator GmbH 1x Privat, depot, Everfuel		
Amount of H2 dispensed since start of operation	217.000kg		

WSW x ZeroEmissionConference

WSW mobil GmbH: Key milestones

2017 Project start 2017/18 2021/22 2025 2023/24 2019/20 Procurement and Project "WSWx AVL order of 10x Van Delivery & final 2019 All 20 FCB are in regular Analysis and optimization Hool FC-busses acceptance of all 10 · Joint procurement for 25 FCbs of fuel cell buses" Start of planning for Solaris FCbs (15 for Cologne and 10 for · HRS (Maximator) is in · Start of operation of the HRS Wuppertal) Delivery & final acceptance regularuse Solaris FCB's Delivery of first Van Hool FCb of 32 Solaris FCbs · Driver training & final Start of Operation depot HRS Start civil work depot HRS acceptance of Van Hool FCbs (Everfuel) Everfuel Procurement process for Retrofit Depots and Procurement for additional depot HRS All 52 FCbs are in regular maintenance facilities 32 FCb building permit HRS Start civil work HRS - Maximator Both HRS are in regular (MEHRLIN) 2020 Solaris was won the tender for 25 FCB · All 10 FCBs (Van Hool) were delivered and accepted Start of Operation HRS

Motivation

To optimize the entire system, from energy use to bus tires, all systems involved in the chain were examined.

More detailed investigations were carried out on the following system elements in particular:

- Power source
- Availability Electrolyzer with the most effective use
- · Drivetrain in the bus

All analyses aim to optimize the economic efficiency of vehicle use. This also includes the approach of improving the service life of all components.

"Analysis and optimization of buses with FC"

Objectives

- Optimize the power-split strategy to extend the service life of the fuel cell system
- Simulate selected driving cycles using the modified operating strategy
- Evaluate the impact of the new strategy on:
 - Fuel cell system lifetime
 - Driving cycle performance

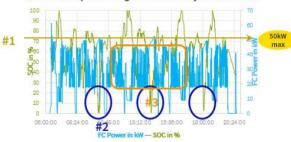
Approach

- 1. Provision of route and bus data
- 2. Creation of simulation model
- 3. Powertrain simulation
- 4. Optimization
- 5. Evaluation

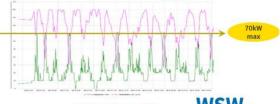
Performance Challenges

- Observations (#1) in ten 2021 buses linked to dynamic fuel cell use (#3) high idle voltage, large voltage swings and humidity cycling during operation. This is not observed in 2024/2025 buses
- The design of the hybrid driveline (battery and fuel cell) along with its power control strategy can directly affect fuel cell performance and impact stack lifetime.
- Effective FCEB performance requires careful consideration of battery sizing (buffer storage) and predictive power control strategies to optimize fuel cell performance.

WSW Bus fleet	Fuel Cell	HV-Battery
10x Van Hool - 2019	Ballard FCvelocity-HD85 - 85 kW	36 kWh
29x Solaris - (10x 2020; 19x 2024)	Ballard FC Move - 70 kW	30,47 kWh
13x Solaris (18m) - 2024	Ballard FC Move - 100kW	60,8 kWh


Issues & Observations of 2021 buses

#1 - Maximum FC Power to ~50kW


#2 - SOC drops to ~0% several times a day

#3 - Dynamic performance of FC power

SOC and FC power diagram for one day of a 2021 bus

For comparison: SOC and FC power diagram 2024/2025 Bus

Conclusions/Next Steps

Observations

- Measurements showed critical behavior, especially in terms of fuel cell power and battery state of charge / drivability.
- Fuel cell power of 70 kW isn't fully achieved during operation, even at low battery state of charge.
- Technical solutions are being tested new vehicle control software to improve drivability, smooth fuel cell load transitions, and improve overall operation.

Next Steps

- Regular meetings with the OEMs (Solaris / Ballard)
- Determination of SoH of battery and fuel cell
- Software Optimization: Drivetrain components software updates/adjustments
- Remedial Options: module refurbishment with Ballard's latest stack technology - designed for higher durability under different humidity cycling and voltage conditions.
- Development of joint strategy for monitoring the FCs to enable preventive measures.

Only through intensive cooperation between industry and users can the overall system be further optimized and the economic burden of fleet electrification be overcome.

Return of Experience from the Industry

Flavio Grazian

Project Manager – Knowledge & Innovation, UITP

Carlos Rivo

Commercial Director, UNVI

Dr. Andreas Z'Graggen

Global Sales Manager, ABB

WHO WE ARE

- · Independent traction system provider globally
- Your preferred partner from product to system and standard to customized solutions based on your needs

WHAT WE STAND FOR

Long history and a rich heritage of technology innovation in transportation segment, which enables us:

- Efficient e-mobility solutions: Offers reliable, high-efficiency traction systems to power electric buses, reducing emissions and fuel dependency.
- Enhanced operational performance: Delivers technology that increases vehicle uptime, range, and energy efficiency for bus fleets.
- Sustainable urban transportation: Supports cities in achieving environmental goals with zero-emission technology that promotes cleaner, quieter urban travel.

Traction Battery Pro

Mobile Inverter HES580

Traction Motor AMXE250S

Helping to decarbonize the best touristic European cities with 100% electric sightseeing buses since 2017, ...

Adapting to customers' needs to achieve Zero Emissions

Carlos Rivo

Managing Directo

Coffee Break

Session continues at 15:00

PANEL DISCUSSION

David Barnett

General Manager Engineering

Translink

Lidia León Talavera

Deputy Director for Operation Centres

EMT Madrid

Martin Dean

Managing Director of Bus

Go-Ahead

Jon Stenslet

Manager Vehicles and Depots

Ruter

Panel Session

Organisational Change and Real-World Performance of Zero Emission Buses

- Integrated public transport provider in Northern Ireland
- 300k passenger journeys per day
- 44m miles per year
- Operate over 1500 vehicles Bus, Coach and Rail
- Maintain over 80 stations and 300 miles of rail infrastructure
- Committed to a 50% carbon reduction by 2030 and carbon neutral by 2040
- 25% of Buses now Zero Emission

Organisational Change and Real-World Performance of Zero Emission Buses

- What operational and organisational changes are critical to successfully integrate zero-emission buses?
- What key performance indicators such as energy consumption, availability, reliability, and downtime are used to monitor ZEB fleets?
- What are the main challenges you've faced in scaling up ZEB fleets, both technically and organisationally?
- What lessons can we learn:
 - Delivering change in the organisation
 - Training and upskilling staff
 - Fleet deployment strategies
 - Route planning
 - Managing recharging or refuelling requirements

UITP's Insights on ZEB Performance

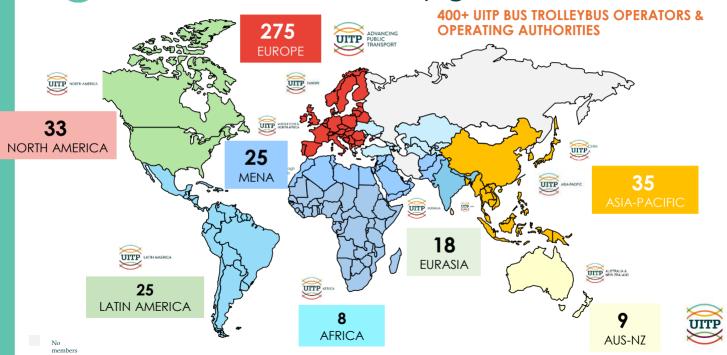
Arno Kerkhof

Head of Bus Unit, UITP

UITP insights on ZEB performance from the perspective of the global network that unites worldwide public transport bus operators

Arno Kerkhof Head of Bus Unit – Knowledge & Innovation

- 1. UITP Knowledge & Innovation network in a nutshell
- 2. Bus data in a growing world of public transport data 📊 What's new in our latest Global Urban Mobility Indicators
- 3. Bus Committee: the ZEB Observatory & Thermal Comfort Toolkit
- 4. Reserarch & innovation EBRT2030 project electric BRT demonstrators (real world)
- 5. UITP Academy with spotlight on next bus programs


Action Point: Congestion-free bus lanes!

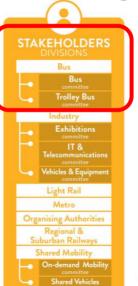
1 UITP CORPORATE BUS UNIT

UITP Bus Division a truly global network

UITP DIVISIONS & COMMITTEES

The UITP working bodies

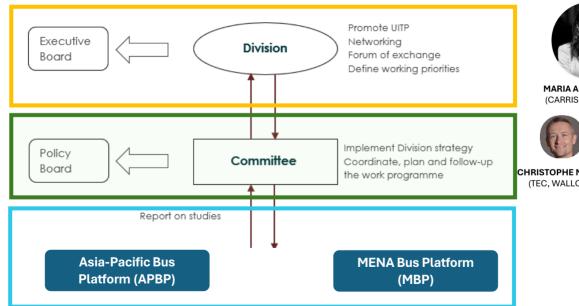
8 Regional **Divisions**


8 Stakeholders **Divisions**

12 Stakeholders **Divisions** Committees

11 Thematic Committees

2 Thematic WGs



Waterborne

Bus BODIES - STRUCTURE

MARIA ALBUOUEROUE (CARRIS, LISBON BUS)

LUIGI DI STASIO CHRISTOPHE MARTIN (CTM, CAGLIARI (TEC, WALLOON)

2 GLOBAL URBAN MOBILITY INDICATORS

GLOBAL URBAN MOBILITY INDICATORS WHAT'S NEW?

FEATURES

53
CITIES

+ HAMBURG + OTTAWA

+ LAGOS + QUITO AN DICATORS

"S NEW?

+ DOHA

+ KUALA LUMPUR

A FULLER PICTURE OF THE **PUBLIC** TRANSPORT SECTOR

NEW METRICS FOR BRT & TROLLEYBUSES

DISCOVER THE NUMB **AUTONOMOUS VEHIC** METRO CARS IN EACH

BERLIN

Global Urban Mobility Indicators 2023

	Bus	Metro	LRT
Opening Year		1902	1895
Annual ridership per capita	129	148	56
Annual passenger-kilometres per capita		676	171
Number of lines		9	22
Network length/bus lanes in km per million inhabitants	30**	41	55
Number of stops/stations per million inhabitants		49	115
Number of vehicles/metro cars per km of network		8.5	1.9
Number of vehicles/metro cars per million inhabitants	456	350	107
Number of automated vehicles/metro cars	0	0	0
Annual vehicle-kilometres per capita	26	6	6
Other	8%	0%	100%
	Share of battery electric buses	Share of automated network length	Share of low-ent LRT vahicles

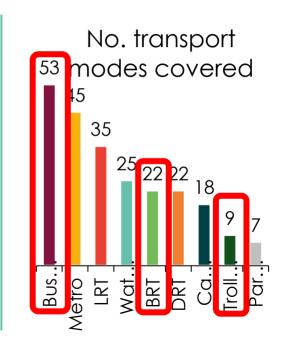
CITY FACTSHEETS

URBAN MOBILITY LANDSCAPE

Shared and on-demand mobility

.

24

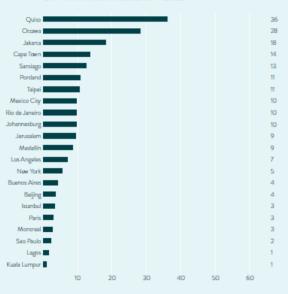


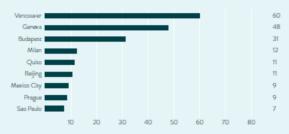
Global urban mobility indicators

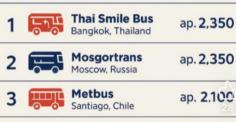
- **Goal**: Annual report providing a comprehensive urban mobility overview at the city level worldwide.
- Target/data unit: Urban mobility indicators; PT metrics; sharing mobility services
- Coverage: 53 cities worldwide
- N. Indicators investigated: 33, quantitative and qualitative indicators
- Main indicators: Annual ridership, Network length, Fleet, Pass-Km, Veh-km, Shared mobility
- **Data collection**: Desk research + primary contacts
- **Frequency**: 1 year (started in 2023)
- Next edition: 2025
- Output: Digital report and dataset
- Link MyLibrary

Number of bus vehicles per million inhabitants -2023

Share of Battery Electric Vehicles (BEVs)




BRT AND TROLLEYBUS NETWORK LENGTH


Trolleybus Km/Million inhabitants - 2023

TESTIMONY UITP ASIA-PACIFIC DIVISION

TransMilenio

Bogotá, Colombia

Delhi Transport

Delhi, India

ap. 1,500

ap. 1,250

3 REAL WORLD BUS OPERATIONS

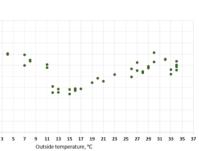
ZEB Observatory Bus Committee

- In the UITP Bus Committee, some operators are already very advanced with around 70-100% of their fleets as zero-emission buses, many others are currently in the 10-20% range, and some are still starting their transition, but big and fast changes are taking place every month as buses are commissioned.
- Members contribute **real-world data** on speed, temperature, battery management, HVAC use, charging strategies and vehicle weight, linking these factors to energy efficiency and operational range.
- Spotlight Result: BEBs were found ~20% more energy-efficient at average speeds of 32 km/h than at 10-13 km/h in moderate temperatures (11-20 °C), highlighting the benefits of smoother flow, better routes and priority measures.

Content related with other UITP Bus Committee work:

- Thermal Comfort Toolkit: Report, Recommendations Summary, Analysis Tool on Python
- UITP Action Points: Regions Thrive with Congestion-Free Bus Networks

Thermal Comfort Kit


This UITP Bus Committee Working Grou climates sharing operational data, fie Barcelona and Dubai, enabling evide

cross diverse regions and na from Ottawa or Oslo to ency and thermal comfort in BEBs.

Spotlight Result:

- How to measure Thermal Comfort? STANDARD"
 - Methodology proposed by the
- HVAC impact on total energy cons
 - Heating in cold regions can a total energy use (e.g. Stockho
 - Cooling in hot regions can rec energy use (e.g., Australia)

O POLICY BRIEF

Policy Brief on In **Motion Charging Trolleybuses**

Following the success of a unique series of three Knowledge Briefs the UITP Trollevbus committee decided to release a Policy Brief on IMC Trolleybuses

IN MOTION CHARGING **TROLLEYBUS SYSTEMS**

SEPTEMBER | 2024

INTRODUCTION

The transition to zero-emission bus fleets is a critical component of the global effort to combat climate change and reduce urban air pollution. Governments and cities worldwide are increasingly setting ambitious targets to eliminate fossil fuel use in pubenhance the passenger experience, increase safety, aptimise operations, and improve fuel economy. Sustainable and efficient public transport systems are instrumental to achieving broader carbon-neutral goals, as they include renewable energy sources and

> An meetion changing traffeybus (Copfice)

sustainable practices and eliminate emissions generated by other public transport modes with higher nea-

By adopting zero-emission bus fleets, cities and regions can significantly lower their carbon footprint and contribute to a cleaner, healthier and more enerav-efficient environment, leveraging renewable enerlic transport, which, in turn, offers an appartunity to ay sources to power public transport networks. There is a wide array of zero-emission bus technologies to consider when planning and implementing the energy transition, including hydrogen buses, battery electric buses (BEBs), and trolleybuses, just to mention the most popular applications.

Several hundred cities around the world operate conventional trolleybuses. They have electric powertrains and are zero-emission buses. Their power networks consist of substations, power cables, and overhead wires. In many cases, major parts of the electric feeding infrastructure can be shared by electric buses (e-buses) with different charging technologies or even rail modes, as these modes are often operated under the same public ownership. This makes this infrastructure a public asset of strategic importance.

Many cities nowadays are actively implementing zero-emission buses, but, unfortunately, in some cases, they are simultaneously dismantling existing operational trolleybus systems. A couple of the main arguments against conventional trolleybuses are that the overhead wire network is a form of visual pallution and trolleybuses have various disadvantages like

4 BUS R&D with EBRT2030

Creating a new generation of advanced, fully electric, urban and peri-urban European BRTs, enhanced by new automation and connectivity functionalities

Obj. 1

poperations-focused demos: 6+1 demos of BRT system innovative solutions in real operation, both city-&operator-led and BRT system-focused, or focused on specific tech developments at system or subsystem level

Obj. 2

The development of technology-focused key innovative solutions for BRT, both at system and subsystem level, at level of vehicle, infrastructure, operation, and IoT connectivity

Obj. 3

The definition a new European concept of BRT for year 2030, benefitting of evaluation, multiplication and replication of the real-operation test of innovations

eBRT2030 project aims to reduce:

- Cost/km/passenger by 10%;
- TCO by 10%;
- Greenhouse gas and pollutant emissions by 70%, and
- Traffic congestion by 10%

6+1 operation-focused Demos: Barcelona, Athens, Prague, Rimini, Amsterdam, Eindhoven & Bogota

Technological Innovations:

- Vehicle
- Charging
- IoT Connectivity

REPORT 'On the road to a concept for brt'

- State of the art of the BRT systems worldwide at the vehicle, infrastructure and operations level
- Definition for BRTs for different regions, contexts and purposes
- Scorecard adapted to eBRT2030 capturing the "double E" component of the Project: European and Electric.

Report release: 2024

Report: "ON THE ROAD TO A CONCEPT FOR BRT"

5 UITP TRAINING ACADEMY

Upcoming Bus Training Programmes

China Bus Study Tour 2025

20 - 24 October 2025

Shenzhen | Guangzhou | Beijing

Bus Électriques

25 - 27 November 2025

Dakar, Sénégal

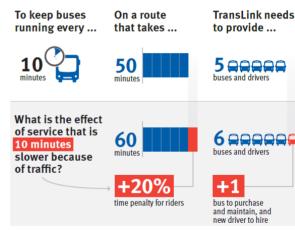
CLOSING REMARK: ACTION POINT CONGRESTION- FREE BUS LANES

• CONGESTION-FREE BUS NETWORKS (Q3 2025)

When was the last time your city or region systematically assessed how well buses perform?

San Francisco's 14 Mission Corridor

Plzeň – America Street Car-Free Zone


Montréal

Benefits for the sector

- Sustainabiltiy
 - Reduces greenhouse gases, air pollution, and car dependency.
- Economic vitality and good use of public resources
 - Maximizes people transport, enabling business growth without road expansion. Bus lanes move 6,000+ people per hour compared to 1,500 in a car lane.
 - Faster buses means freeing the budget for service increase at equal total operational cost.
- · Social equity and quality of life
 - Faster buses foster inclusivity, affordability, and mobility for all by enhancing access to jobs, education, healthcare and social interactions.
 - Reduces congestion, making cities more livable and improving quality of life.

The cost of delays. Source: Translink

- Single Lane Bi-directional Bus Lane
- 1 MIN VIDEO UITP SUMMIT SPECIAL RECOGNITION AWARD INNOVATION AWARDS SOLUTION BUS INFRASTRUCTURE

Thank you!!

End of Day

Learn more at our sponsors' booths:
ABB - Hall 8, Booth 814B
Ballard - Hall 9, Booth 957
REFIRE - Hall 11, Booth 1186
JEMA Energy - Hall 6, Booth 652A
Yutong - Hall 3, Booth 305

Join JEMA ENERGY's booth for drinks!

starting at 16:45 Hall 6, Booth 652A

ZERO EMISSION BUS

CONFERENCE 7th - 9th Oct 2025

@ Busworld Europe Brussels

Organised by

